catabolite activator protein - significado y definición. Qué es catabolite activator protein
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es catabolite activator protein - definición

TRANS-ACTING TRANSCRIPTIONAL ACTIVATOR
Catabolite Activator Protein; CAP activating protein

GM2A         
MAMMALIAN PROTEIN FOUND IN HOMO SAPIENS
Ganglioside GM2 activator protein; GM2 ganglioside activator; GM2A (gene)
GM2 ganglioside activator also known as GM2A is a protein which in humans is encoded by the GM2A gene.
Catabolite repression         
A PROCESS IN WHICH THE PRESENCE OF ONE NUTRIENT SOURCE LEADS TO A DECREASE IN THE FREQUENCY, RATE, OR EXTENT OF PROCESSES INVOLVED IN THE METABOLISM OF OTHER NUTRIENT SOURCES.
Glucose effect; Carbon catabolite repression; Carbon catabolic repression
Carbon catabolite repression, or simply catabolite repression, is an important part of global control system of various bacteria and other microorganisms. Catabolite repression allows microorganisms to adapt quickly to a preferred (rapidly metabolizable) carbon and energy source first.
Activator (genetics)         
  • ''lac'' operon in detail
PROTEIN THAT INCREASES TRANSCRIPTION OF A GENE OR SET OF GENES
Activator protein; Transcriptional activator; Transcription activator; Transcription activators; Transcriptional activators; DNA Activation; Activator sequence; Activator sequences; Activator DNA sequences; Activator proteins
A transcriptional activator is a protein (transcription factor) that increases transcription of a gene or set of genes. Activators are considered to have positive control over gene expression, as they function to promote gene transcription and, in some cases, are required for the transcription of genes to occur.

Wikipedia

Catabolite activator protein

Catabolite activator protein (CAP; also known as cAMP receptor protein, CRP) is a trans-acting transcriptional activator that exists as a homodimer in solution. Each subunit of CAP is composed of a ligand-binding domain at the N-terminus (CAPN, residues 1–138) and a DNA-binding domain at the C-terminus (DBD, residues 139–209). Two cAMP (cyclic AMP) molecules bind dimeric CAP with negative cooperativity. Cyclic AMP functions as an allosteric effector by increasing CAP's affinity for DNA. CAP binds a DNA region upstream from the DNA binding site of RNA Polymerase. CAP activates transcription through protein-protein interactions with the α-subunit of RNA Polymerase. This protein-protein interaction is responsible for (i) catalyzing the formation of the RNAP-promoter closed complex; and (ii) isomerization of the RNAP-promoter complex to the open conformation. CAP's interaction with RNA polymerase causes bending of the DNA near the transcription start site, thus effectively catalyzing the transcription initiation process. CAP's name is derived from its ability to affect transcription of genes involved in many catabolic pathways. For example, when the amount of glucose transported into the cell is low, a cascade of events results in the increase of cytosolic cAMP levels. This increase in cAMP levels is sensed by CAP, which goes on to activate the transcription of many other catabolic genes.

CAP has a characteristic helix-turn-helix motif structure that allows it to bind to successive major grooves on DNA. The two helices are reinforcing, each causing a 43° turn in the structure, with an overall 94° degree turn in the DNA.

This interaction opens up the DNA molecule, allowing RNA polymerase to bind and transcribe the genes involved in lactose catabolism. cAMP-CAP is required for transcription activation of the lac operon.

This requirement reflects the greater simplicity with which glucose may be metabolized in comparison to lactose. The cell "prefers" glucose, and, if it is available, the lac operon is not activated, even when lactose is present. This is an effective way of integrating the two different signals. This phenomenon is known as catabolite repression. CAP plays an important role in catabolite repression, a well-known example of a modulon and also plays a role in the Mal regulon.